1. Let R be the region in the first quadrant that is enclosed by the graphs of $y=4-x^{2}, y=3 x$ and the y-axis.
a. Find the exact area of R.
b. Find the volume of the solid obtained by revolving R about the x-axis.
c. Find the volume of the solid obtained by revolving R about the y-axis.
d. Find the volume of the solid obtained by revolving R about the line $y=-2$.
e. Find the volume of the solid obtained by revolving R about the line $x=5$
2. Let R be the region enclosed by that is enclosed by the graphs of $f(x)=2 x-\frac{x^{2}}{2}, g(x)=e^{x-2}$.
a. Find the area R.
b. Find the volume when R is revolved over the x-axis.
c. Find the volume when R is revolved over the line $y=-2$.
d. Find the volume when R is revolved over the line $y=5$.
3. Let R be the region in the first quadrant that is enclosed by the graphs of $y=4-x^{2}, y=3 x$ and the x-axis.
a. Find the exact area of R.
b. Find the volume of the solid obtained by revolving R about the x-axis.
c. Find the volume of the solid obtained by revolving R about the y-axis.
d. Find the volume of the solid obtained by revolving R about the line $x=2$.
e. Find the volume of the solid obtained by revolving R about the line $y=6$.
4. Let R be the region in the first quadrant that is enclosed by the graphs of $y=\sqrt{x}, y=4-3 x^{2}$ and the y-axis.
a. Find the exact area of R.
b. Find the volume of the solid obtained by revolving R about the x-axis.
c. Find the volume of the solid obtained by revolving R about the y-axis.
d. Find the volume of the solid obtained by revolving R about the line $y=5$.
e. Find the volume of the solid obtained by revolving R about the line $x=4$.
5. Let R be the region in the first quadrant that is enclosed by the graphs of $y=x+1, y=2 x^{3}$ and the y-axis. Set up the integral, but do not evaluate.
a. Find the exact area of R.
b. Find the volume of the solid obtained by revolving R about the x-axis.
c. Find the volume of the solid obtained by revolving R about the y-axis.
d. Find the volume of the solid obtained by revolving R about the line $y=5$.
e. Find the volume of the solid obtained by revolving R about the line $x=-2$.
6. -

a. $13 / 6$
b. $158 \mathrm{pi} / 15$
c. $3 \mathrm{pi} / 2$
d. $96 \mathrm{pi} / 5$
e. 20.167pi
2. -
a. $\int_{a}^{b} f(x)-g(x) d x=2.149$
b. $\pi \int_{a}^{b} f(x)^{2}-g(x)^{2} d x=4.4877 \pi$
c. $\pi \int_{a}^{b}(2+f(x))^{2}-(2+g(x))^{2} d x=13.472 \pi$
d. $\pi \int_{a}^{b}(5-g(x))^{2}-(5-f(x))^{2} d x=16.612 \pi$
3. -
a. $19 / 6$
b. $98 \mathrm{pi} / 15$
c. $13 \mathrm{pi} / 2$
d. $37 \mathrm{pi} / 6$
e. $472 \mathrm{pi} / 15$
4. -
a. $7 / 3$
b. $93 \mathrm{pi} / 10$
c. $17 \mathrm{pi} / 10$
d. $\approx 14.03 \pi$
e. 16.967pi
5. -
a. $\int_{0}^{1}\left[(x+1)-2 x^{3}\right] d x$
b. $\pi \int_{0}^{1}\left[(x+1)^{2}-\left(2 x^{3}\right)^{2}\right] d x$
c. $\pi \int_{0}^{1}\left(\frac{y}{2}\right)^{\frac{2}{3}} d y+\pi \int_{1}^{2}\left[\left(\frac{y}{2}\right)^{\frac{2}{3}}-(y-1)^{2}\right] d y$
d. $\pi \int_{0}^{1}\left(5-2 x^{3}\right)^{2}-(4-x)^{2} d x$
e. $\pi \int_{0}^{1}(2+\sqrt[3]{y / 2})^{2}-2^{2} d y+\pi \int_{1}^{2}(2+\sqrt[3]{y / 2})^{2}-(2+(y-1))^{2} d y$

