WS – Solids of Revolution

- 1. Let R be the region in the first quadrant that is enclosed by the graphs of $y = 4 x^2$, y = 3x and the y-axis.
 - a. Find the exact area of R.
 - b. Find the volume of the solid obtained by revolving R about the x-axis.
 - c. Find the volume of the solid obtained by revolving R about the y-axis.
 - d. Find the volume of the solid obtained by revolving R about the line y = -2.
 - e. Find the volume of the solid obtained by revolving R about the line x = 5
- 2. Let R be the region enclosed by that is enclosed by the graphs of $f(x) = 2x \frac{x^2}{2}$, $g(x) = e^{x-2}$.
 - a. Find the area R.
 - b. Find the volume when R is revolved over the x-axis.
 - c. Find the volume when R is revolved over the line y = -2.
 - d. Find the volume when R is revolved over the line y = 5.
- 3. Let R be the region in the first quadrant that is enclosed by the graphs of $y = 4 x^2$, y = 3x and the x-axis.
 - a. Find the exact area of R.
 - b. Find the volume of the solid obtained by revolving R about the x-axis.
 - c. Find the volume of the solid obtained by revolving R about the y-axis.
 - d. Find the volume of the solid obtained by revolving R about the line x = 2.
 - e. Find the volume of the solid obtained by revolving R about the line y = 6.
- 4. Let R be the region in the first quadrant that is enclosed by the graphs of $y = \sqrt{x}$, $y = 4-3x^2$ and the y-axis.
 - a. Find the exact area of R.
 - b. Find the volume of the solid obtained by revolving R about the x-axis.
 - c. Find the volume of the solid obtained by revolving R about the y-axis.
 - d. Find the volume of the solid obtained by revolving R about the line y = 5.
 - e. Find the volume of the solid obtained by revolving R about the line x = 4.
- 5. Let R be the region in the first quadrant that is enclosed by the graphs of y = x+1, $y = 2x^3$ and the y-axis. Set up the integral, but do not evaluate.
 - a. Find the exact area of R.
 - b. Find the volume of the solid obtained by revolving R about the x-axis.
 - c. Find the volume of the solid obtained by revolving R about the y-axis.
 - d. Find the volume of the solid obtained by revolving R about the line y = 5.
 - e. Find the volume of the solid obtained by revolving R about the line x = -2.

<u>Answers</u>

- 1. –
- a. 13/6
- b. 158pi/15
- c. 3pi/2d. 96pi/5
- e. 20.167pi

a.
$$\int_{a}^{b} f(x) - g(x) dx = 2.149$$

b.
$$\pi \int_{a}^{b} f(x)^{2} - g(x)^{2} dx = 4.4877\pi$$

c.
$$\pi \int_{a}^{b} (2 + f(x))^{2} - (2 + g(x))^{2} dx = 13.472\pi$$

d.
$$\pi \int_{a}^{b} (5 - g(x))^{2} - (5 - f(x))^{2} dx = 16.612\pi$$

3. -

- a. 19/6b. 98pi/15c. 13pi/2
- d. 37pi/6
- e. 472pi/15

4. –

- a. 7/3
- b. 93pi/10
- c. 17pi/10
- d. $\approx 14.03\pi$
- e. 16.967pi

5. –

a.
$$\int_{0}^{1} \left[(x+1) - 2x^{3} \right] dx$$

b.
$$\pi \int_{0}^{1} \left[(x+1)^{2} - (2x^{3})^{2} \right] dx$$

c.
$$\pi \int_{0}^{1} \left(\frac{y}{2} \right)^{\frac{2}{3}} dy + \pi \int_{1}^{2} \left[\left(\frac{y}{2} \right)^{\frac{2}{3}} - (y-1)^{2} \right] dy$$

d.
$$\pi \int_{0}^{1} (5 - 2x^{3})^{2} - (4 - x)^{2} dx$$

e.
$$\pi \int_{0}^{1} \left(2 + \sqrt[3]{y/2} \right)^{2} - 2^{2} dy + \pi \int_{1}^{2} \left(2 + \sqrt[3]{y/2} \right)^{2} - \left(2 + (y-1) \right)^{2} dy$$