WS - Riemann Sums and the Definite Integral AP Calculus - Harter

Name
Date \qquad

1. Sketch a picture of $\int_{-1}^{4} x^{2}+1 d x$
2. If $\int_{0}^{5} f(x) d x=10$ and $\int_{5}^{7} f(x) d x=3$, find each
a. $\int_{0}^{7} f(x) d x=$
b. $\int_{5}^{0} f(x) d x=$
c. $\int_{7}^{0} 2 f(x) d x=$
d. $\int_{5}^{5} f(x) d x=$
3. If $\int_{-1}^{1} f(x) d x=1$ and $\int_{0}^{1} f(x) d x=5$, find each
a. $\int_{-1}^{0} f(x) d x=$
b. $\int_{1}^{0} f(x) d x-\int_{-1}^{0} f(x) d x$
c. $\int_{-1}^{1} 3 f(x) d x=$
d. $\int_{-1}^{0} f(x)+2 d x=$

4. Use the picture above to evaluate each integral.
a. $\int_{0}^{2} f(x) d x=$
b. $\int_{-4}^{2} f(x) d x=$
c. $\int_{-4}^{6} f(x) d x=$
d. $\int_{-4}^{6} f(x)+2 d x=$

5. Use f at the left to find each.
a. $\int_{1}^{7} f(x) d x=$
b. The average value of $f(x)$ on $[1,7]$

6. The rate that people enter a theater starting at noon is recorded above. There are 60 people in the theater at noon.
a. How many were in the theatre at $2: 00$?
b. How many people were in the theatre at $4: 30$?
c. At what time were the most people in the theater? How many?
7. The table at the right gives the values for the rate (in gal/s) which water flowed into a lake with readings taken at specific times.

Time (sec)	0	5	12	20	36	42
Rate (gal/sec)	300	200	150	100	150	250

a. Use a Left Hand Riemann Sum with 5 subintervals to estimate the total amount of water that flowed into the lake during the time period $\mathrm{t}=0$ to $\mathrm{t}=42$.
b. Use a Trapezoidal Approximation with 5 subintervals to estimate the total amount of water that flowed into the lake during the time period $\mathrm{t}=0$ to $\mathrm{t}=42$.
8. Evaluate:
a. $\int_{-1}^{2} 6 x^{2}+2 x-1 d x$
b. $\int_{1}^{8} \frac{2}{\sqrt[3]{x}} d x$
c. $\int_{0}^{\frac{\pi}{2}} x-\sin x d x$
9. The table gives the values for the rate (in m / s) at which a car travels at specific times. Use a Midpoint Riemann Sum with 3 subintervals to estimate the distance the car traveled from $t=0$ to $t=120$.

Time (sec)	0	20	40	60	80	100	120
Rate (gal/s)	300	200	150	100	150	250	110

10. Find the average value of f on the given interval.
a. $f(x)=2 x^{2}-3 x$ on the interval $[-2,1]$.
b. $f(x)=2 x-\frac{2}{x^{2}}$ on the interval [1,4].
11. Solve the differential equation if $f^{\prime \prime}(x)=3 x^{2}-3, f(2)=4$ and $f^{\prime}(-1)=3$.
12. $g(x)=\int_{0}^{x} f(t) d t$ and f is graphed at the right. Find each.
a. $g(0)$
b. $g(2)$
c. $g(-2)$
d. $g(5)$
e. $g^{\prime}(4)$

f. Find the equation of the line tangent to $g(x)$ when $x=5$.
g. $g^{\prime \prime}(2)$
h. $g^{\prime \prime}(4)$
i. Where is g concave down?
j. Where is g increasing?
13.

The graph of the function f shown above consists of a semicircle and three line segments. Let g be the function given by $g(x)=\int_{-3}^{x} f(t) d t$.
(a) Find $g(0)$ and $g^{\prime}(0)$.
(b) Find all values of x in the open interval $(-5,4)$ at which g attains a relative maximum. Justify your answer.
(c) Find the absolute minimum value of g on the closed interval $[-5,4]$. Justify your answer.

(d) Find all values of x in the open interval $(-5,4)$ at which the graph of g has a point of inflection.

