WS – Riemann Sums and the Definite Integral *AP Calculus - Harter*

Name		
Date	Per	

4. Use the picture above to evaluate each integral.

a.
$$\int_{0}^{2} f(x) dx =$$

b. $\int_{-4}^{2} f(x) dx =$

- c. $\int_{-4}^{6} f(x) dx =$ d. $\int_{-4}^{6} f(x) + 2 dx =$
- 5. Use f at the left to find each.

a.
$$\int_{1}^{t} f(x) dx =$$

b. The average value of f(x) on [1,7]

- 6. The rate that people enter a theater starting at noon is recorded above. There are 60 people in the theater at noon.
 - a. How many were in the theatre at 2:00?
 - b. How many people were in the theatre at 4:30?
 - c. At what time were the most people in the theater? How many?
- The table at the right gives the values for the rate (in gal/s) which water flowed into a lake with readings taken at specific times.

Time	0	5	12	20	36	42
(sec)						
Rate	300	200	150	100	150	250
(gal/sec)						

- a. Use a <u>Left Hand Riemann Sum</u> with 5 subintervals to estimate the total amount of water that flowed into the lake during the time period t = 0 to t = 42.
- b. Use a <u>**Trapezoidal Approximation**</u> with 5 subintervals to estimate the total amount of water that flowed into the lake during the time period t = 0 to t = 42.
- 8. Evaluate:

a.
$$\int_{-1}^{2} 6x^{2} + 2x - 1 \, dx$$

b.
$$\int_{1}^{8} \frac{2}{\sqrt[3]{x}} \, dx$$

c.
$$\int_{0}^{\frac{\pi}{2}} x - \sin x \, dx$$

9. The table gives the values for the rate (in m/s) at which a car travels at specific times. Use a **Midpoint Riemann Sum** with 3 subintervals to estimate the distance the car traveled from t = 0 to t = 120.

Time	0	20	40	60	80	100	120
(sec)							
Rate	300	200	150	100	150	250	110
(gal/s)							

10. Find the average value of f on the given interval.

a.
$$f(x) = 2x^2 - 3x$$
 on the interval [-2,1].
b. $f(x) = 2x - \frac{2}{x^2}$ on the interval [1,4].

11. Solve the differential equation if $f''(x) = 3x^2 - 3$, f(2) = 4 and f'(-1) = 3.

12. $g(x) = \int_{0}^{x} f(t) dt$ and f is graphed at the right. Find each.

a. g(0)

 $a(\lambda)$

- b. g(2)
- c. g(-2)
- d. g(5)
- e. g'(4)
- f. Find the equation of the line tangent to g(x) when x = 5.
- g. g''(2)
- h. g''(4)
- i. Where is g concave down?
- j. Where is g increasing?
- 13. The graph of the function f shown above consists of a semicircle and three line segments. Let g be the function

given by
$$g(x) = \int_{-3}^{x} f(t) dt$$

- (a) Find g(0) and g'(0).
- (b) Find all values of x in the open interval (-5, 4) at which g attains a relative maximum. Justify your answer.
- (c) Find the absolute minimum value of g on the closed interval [-5, 4]. Justify your answer.
- (d) Find all values of x in the open interval (-5, 4) at which the graph of g has a point of inflection.

