${ }^{\text {Ist/2 }} \mathbf{2 n d}^{\text {nd }}$ Derivative Test, Rolles Thm, MVT
 SHOW YOUR WORK ON YOUR OWN PAPER

Examine the values of a continuous and differentiable function f shown below on the interval $[0,8]$.

x	$\mathbf{0}$	\mathbf{I}	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$f(x)$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{1 1}$

I. At how many values of x must there be a slope of zero on $f(x)$? Explain your reasoning.
2. On the interval $[0,8]$, does there have to exist a value of x where $f^{\prime}(x)=\frac{9}{8}$? Explain your reasoning.

Use the first derivative test to name the largest open intervals where the function is decreasing or increasing. Name the \times values all relative extrema.
3. $g(x)=2 x^{3}-3 x^{2}-36 x-2$
4. $g(x)=\frac{x+2}{\sqrt{x}}$
5. $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$

Find the open intervals where the function is concave up or concave down. Name any points of inflection.
6. $f(x)=\frac{1}{5} x^{5}-2 x^{4}$
7. $f(x)=-3 x^{5}+15 x^{3}$
8. $f(x)=x-2 \sin x ;[0,3 \pi]$
9. $f(x)=\frac{x+2}{\sqrt{x}}$

Find the absolute extrema on the given interval.
10. $f(x)=\sin x+\cos x ;\left[0, \frac{\pi}{3}\right]$
II. $f(x)=x^{2}+\frac{2}{x} ;[1 / 2,2]$
12. Find all values of c where the Mean Value Theorem applies to the equation $f(x)=x^{2}-6 x+1$ on the interval $[-1,2]$. Draw a picture of f, the secant line and the tangent line that demonstrate your answer.
13. Find all values of c where the Mean Value Theorem applies to the equation $f(x)=\frac{x^{2}-1}{x+2}$ on the interval $[-3,2]$.
14. Find all values of c where the Mean Value Theorem applies to the equation $f(x)=x-\sin 2 x$ on the interval $[0, \pi / 2]$.

Perform the second derivative test for each.
15. $f(x)=3 x^{4}-8 x^{3}$
16. $f(x)=x^{4}-8 x^{2}+10$
17. Draw your own picture and use it to explain the Mean Value Theorem in your own words.
18. Draw a picture and and use it to explain Rolles Theorem in your own words.

Determine if Rolle's Theorem can be applied on the closed interval and find the value of c guaranteed by the Theorem for
19. $f(x)=\sin x$ on $[0,2 \pi]$.
20. $f(x)=x^{3}-3 x^{2}+2 x+2$ on $[0,1]$.

ANSWERS

I. -
2. -
3. Rel MAX at $x=-2$, rel MIN at $\mathrm{x}=3$
$\operatorname{INC}(-\infty,-2)(3, \infty)$, DEC $(-2,3)$
4. Rel MIN at $x=2$
$\operatorname{INC}(2, \infty) \operatorname{DEC}(0,2)$
5. Rel MAX at $x=0$, rel MIN at $\mathrm{x}=-1,2$
$\operatorname{DEC}(-\infty,-1)(0,2) \operatorname{INC}(-1,0)(2, \infty)$
6. POI at $\mathrm{x}=6$
$\operatorname{CCUP}(6, \infty) \operatorname{CCDWN}(-\infty, 6)$
7. POI at $\pm \frac{\sqrt{6}}{2}, 0$
$\operatorname{CCUP}\left(-\infty, \frac{-\sqrt{6}}{2}\right),\left(0, \frac{\sqrt{6}}{2}\right) \operatorname{CCDWN}\left(\frac{-\sqrt{6}}{2}, 0\right),\left(\frac{\sqrt{6}}{2}, \infty\right)$
8. POI at $\pi, 2 \pi$
$\operatorname{CCUP}(0, \pi)(2 \pi, 3 \pi) \quad \operatorname{CCDWN}(\pi, 2 \pi)$
9. POI AT $X=6$
$\operatorname{CCUP}(0,6) \operatorname{CCDWN}(6, \infty)$
10. $f\left(\frac{\pi}{4}\right)=\sqrt{2} ; f(0)=1$
II. $f(2)=5 ; f(1)=3$
12. $x=1 / 2$
13. Rolles Thm does not apply since it is not continuous at -2
14. $\pi / 4$
15. $f^{\prime \prime}(0)=0$ TEST FAILS!
$f^{\prime \prime}(2)$ is POSITIVE, REL MIN at $x=2$
16. $f^{\prime \prime}(0)$ is neg, rel MAX at $x=0$
$f^{\prime \prime}(-2)$ is pos, rel MIN at $x=-2$
$f^{\prime \prime}(2)$ is pos, rel MIN at $x=2$
17. See your notes
18. See your notes
19. $f(x)$ is continuous and differentiable on $[0,2 \pi]$ and $f(0)=f(2 \pi)=0$, so Rolles THM applies.

There is zero slope at $\frac{\pi}{2}$ and $\frac{3 \pi}{2}$ on $[0,2 \pi]$.
20. $1-\frac{\sqrt{3}}{3}$

