Rolles Theorem/Mean Value Theorem

- 1. In your own words, describe Rolles Theorem. Include a diagram.
- 2. In your own words, describe the Mean Value Theorem. Include a diagram.

For 3-4, explain why Rolles Theorem does not apply even though there exists and a and b such that f(a) = f(b).

Determine for each if Rolle's Theorem can be applied. Find all values c, on the closed interval [a,b] such that f'(c)=0.

5. $f(x) = x^2 - 2x$; [0,2] 6. $f(x) = x^2 - 5x + 4$; [1,4] 7. $f(x) = (x-3)(x+1)^2$; [-1,3] 8. $f(x) = x^{2/3} - 1$; [-8,8] 9. $f(x) = \sin x$; [0,2 π]

Determine for each if the Mean Value Theorem can be applied. Find all values c, on the closed interval [a,b] such that f(b) - f(a)

$$f'(c) = \frac{f(x) - f(x)}{b - a}$$
10. $f(x) = x^2$; $[-2, 1]$
11. $f(x) = x(x^2 - x - 2)$; $[-1, 1]$
12. $f(x) = x^{2/3}$; $[0, 1]$
13. $f(x) = \frac{x + 1}{x}$; $[\frac{1}{2}, 2]$
14. $f(x) = \frac{x + 1}{x}$; $[-2, 2]$
15. $f(x) = x - 2\sin x$; $[-\pi, \pi]$

Answers

- 1. -2. -
- 3. f(x) is NOT differentiable at x = 1.
- 4. f(x) is NOT continuous at $x = 2\pi$.
- 5. Continuous, differential on [0,2]

f(0) = f(2) = 0c = 1

- 6. Continuous, differential on [1,4] f(1) = f(4) = 0c = 5/2
- 7. Continuous, differential on [-1,3]f(-1)=f(3)=0c = 5/3
- 8. f(x) is NOT differentiable x = 0. So, Rolle's Thm does not apply.
- 9. Continuous, differential on $[0,2\pi]$ $f(0) = f(2\pi) = 0$ $c = \frac{\pi}{2}, \frac{3\pi}{2}$

10.
$$c = -\frac{1}{2}$$

11.
$$c = -\frac{1}{3}$$

12.
$$c = \frac{8}{27}$$

- 13. c = 1
- 14. MVT does NOT apply, f(x) is not continuous at x = 0.

15.
$$c = -\frac{\pi}{2}, \frac{\pi}{2}$$