1. *Write the integral that would find the volume with a base enclosed by $y=x^{2}, y=0, x=2$ and slices that are:
a. SQUARES
b. SEMICIRCLES
c. EQUILATERAL TRIANGLES
d. RIGHT ISOSCELES TRIANGLES
2. * Find the area bounded by $f(x)=-2 x+4, g(x)=x^{2}+3 x+4$.
3. * Find the area between $y=x^{2}-2 x$ and $y=x$ on the interval $[0,4]$.
4. * Find the area between $y=e^{2 x}$ and the x-axis on the interval $[0,2]$.
5. * Find the area enclosed by $y=x^{2}$ and $y=x^{3}$.
6. *Consider the area R enclosed by $y=x^{2}, y=0$ and $y=-2 x+8$. Set up, but do not solve the integral for each.
a. The area of R.
b. The volume when R is revolved over the x-axis.
c. The volume when R is revolved over the y-axis.
d. The volume when R is revolved over the $x=5$.
7. Revolve the area enclosed by $y=2-x^{2}, y=x$, and the y-axis over the x-axis.
8. Revolve the area enclosed by $y=x^{2}-1, x=0$, and $y=3$ over the y-axis.
9. *Set up the integral only for the area revolved over the $y=-1$ that is enclosed by $y=\sqrt{x}, x=1$ and $x=2$.
10. * Write the integral that would find the volume with a circular base of $x^{2}+y^{2}=1$ and slices that are:
a. SQUARES
b. SEMICIRCLES
c. EQUILATERAL TRIANGLES
d. RIGHT ISOSCELES TRIANGLES
11. Consider the area W and E enclosed below by:

$$
\begin{gathered}
m(x)=-x^{2}+6 x-2, \quad u(x)=-\sin (2 x+2)+3, \\
k(x)=e^{-0.3 x+2}
\end{gathered}
$$

a. Find the area of region E .
b. Find the volume of a solid with E as its base and SQUARE slices.
c. Find the area of the region W .
d. Find the volume when W is rotated over the x-axis.
e. Find the volume when W is rotated over the $y=7$.
12. * Revolve the area enclosed by $y=x^{2}$ and $y=1$ (see fig at the right) about the following axis:
a. $\quad y=1$
b. $y=-1$
c. $y=2$
13. Find the area that is enclosed by $y=-x^{3}+2 x^{2}+2 x+3$ and $y=-x^{2}-5 x+3$. Show integral(s) used.

14. Revolve the area enclosed by $x^{2}+y^{2}=9, y=1, y=3$ and $x=0$ in the first quadrant over the y-axis.

Consider the area M that is enclosed by the equations $f(x)=\sin \left(x^{3}-x\right)+2, g(x)=3 x^{2}-5 x+3$ shown at the right.
15. Find the area M.
16. Find the volume with RIGHT TRIANGLE slices on M, perpendicular to the x-axis.
17. Find the volume with EQULATERAL TRIANGLE slices on M, perpendicular to the x -axis.
18. M is rotated over the x-axis.
19. M is rotated over $\mathrm{y}=-2$.
20. M is rotated over y-axis.
21. M is rotated over $x=3$.

Answers

1. -

a. $32 / 5$
b. $\frac{4}{5} \pi$
c. $\frac{8 \sqrt{3}}{5}$
d. $16 / 5$
2. $125 / 6$
3. $19 / 3$
4. $\frac{1}{2}\left(e^{4}-1\right)$
5. $1 / 12$
6. -
a. $\int_{0}^{2} x^{2} d x+\int_{2}^{4}(-2 x+8) d x$
b. $\pi \int_{0}^{2}\left(x^{2}\right)^{2} d x+\pi \int_{2}^{4}(-2 x+8)^{2} d x$
c. $\pi \int_{0}^{4}\left(\frac{8-y}{2}\right)^{2}-\sqrt{y}^{2} d y$
d. $\pi \int_{0}^{4}(5-\sqrt{y})^{2}-\left(5-\left(\frac{8-y}{2}\right)\right)^{2} d y$
7. $\frac{38 \pi}{15}$
8. 8π
9. $\pi \int_{1}^{2}\left[(1+\sqrt{x})^{2}-1\right] d x$

NORMAL FLOAT AUTO REAL RADIAN MP ZOOM BOX ZOOM BOX

$X=.7928719$
10. -
a. $16 / 3$
b. $\frac{2 \pi}{3}$
c. $\frac{4 \sqrt{3}}{3}$
d. $8 / 3$
11. -
a. 2.316
b. 5.825
c. 8.306
d. 81.375π
e. 34.915π
12. -
a. 16pi/15
b. $64 \mathrm{pi} / 15$
c. $56 \mathrm{pi} / 15$
13. 62.750
14. $28 \mathrm{pi} / 3$
15. 0.984
16. 0.457
17. 0.396
18. 3.528pi
19. 7.463pi
20. 2.077pi
21. 3.826pi

