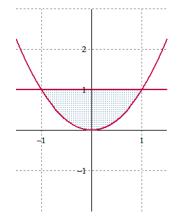
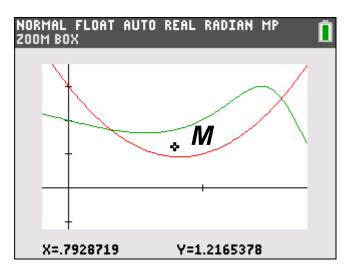

Review Area between Curves and Solids of Revolution Calculus AB Harter


- 1. *Write the integral that would find the volume with a base enclosed by $y = x^2$, y = 0, x = 2 and slices that are:
 - a. SQUARES
 - b. SEMICIRCLES
 - c. EQUILATERAL TRIANGLES
 - d. RIGHT ISOSCELES TRIANGLES
- 2. * Find the area bounded by f(x) = -2x + 4, $g(x) = x^2 + 3x + 4$.
- 3. * Find the area between $y = x^2 2x$ and y = x on the interval [0,4].
- 4. * Find the area between $y = e^{2x}$ and the x-axis on the interval [0,2].
- 5. * Find the area enclosed by $y = x^2$ and $y = x^3$.
- 6. *Consider the area R enclosed by $y = x^2$, y = 0 and y = -2x + 8. Set up, but do not solve the integral for each. a. The area of R.
 - b. The volume when R is revolved over the x-axis.
 - c. The volume when R is revolved over the y-axis.
 - d. The volume when R is revolved over the x = 5.
- 7. Revolve the area enclosed by $y = 2 x^2$, y = x, and the y-axis over the x-axis.
- 8. Revolve the area enclosed by $y = x^2 1$, x = 0, and y = 3 over the y-axis.
- 9. *Set up the integral only for the area revolved over the y = -1 that is enclosed by $y = \sqrt{x}$, x = 1 and x = 2.
- 10. * Write the integral that would find the volume with a circular base of $x^2 + y^2 = 1$ and slices that are:
 - a. SQUARES
 - b. SEMICIRCLES
 - c. EQUILATERAL TRIANGLES
 - d. RIGHT ISOSCELES TRIANGLES

11. Consider the area W and E enclosed below by:

$$m(x) = -x^{2} + 6x - 2$$
, $u(x) = -\sin(2x + 2) + 3$,
 $k(x) = e^{-0.3x + 2}$

- a. Find the area of region E.
- b. Find the volume of a solid with E as its base and SQUARE slices.
- c. Find the area of the region W.
- d. Find the volume when W is rotated over the x-axis.
- e. Find the volume when W is rotated over the y = 7.
- 12. * Revolve the area enclosed by $y = x^2$ and y = 1 (see fig at the right) about the following axis:
 - a. *y*=1
 - b. *y* = -1
 - c. *y* = 2
- 13. Find the area that is enclosed by $y = -x^3 + 2x^2 + 2x + 3$ and $y = -x^2 5x + 3$. Show integral(s) used.


14. Revolve the area enclosed by $x^2 + y^2 = 9$, y = 1, y = 3 and x = 0 in the first quadrant over the y-axis.

Consider the area M that is enclosed by the equations $f(x) = \sin(x^3 - x) + 2$, $g(x) = 3x^2 - 5x + 3$ shown at the right.

- 15. Find the area M.
- 16. Find the volume with RIGHT TRIANGLE slices on M, perpendicular to the x-axis.
- 17. Find the volume with EQULATERAL TRIANGLE slices on M, perpendicular to the x-axis.
- 18. M is rotated over the x-axis.
- 19. M is rotated over y = -2.
- 20. M is rotated over y-axis.
- 21. M is rotated over x = 3.

Answers

13446	13		
1.	-		10
	a.	32/5	
		$\frac{4}{5}\pi$	
	C.	$\frac{8\sqrt{3}}{5}$	
	d.	16/5	
2.	125/6		11
3.	19/3		ć
4.	$\frac{1}{2}(e^{4} -$	1)	
5.	1/12		(
6.	-		
		$\int_{0}^{2} x^{2} dx + \int_{2}^{4} (-2x+8) dx$	12
	b.	$\pi \int_{0}^{2} (x^{2})^{2} dx + \pi \int_{2}^{4} (-2x+8)^{2} dx$	
	C.	$\pi \int_0^4 \left(\frac{8-y}{2}\right)^2 - \sqrt{y^2} dy$	13. 6 14. 2
	d.	$\pi \int_{0}^{4} \left(5 - \sqrt{y}\right)^{2} - \left(5 - \left(\frac{8 - y}{2}\right)\right)^{2} dy$	15. (16. (
7.	<u>38</u> π		17. (
	15		18. 3
8.	8π		19. 7
9.	$\pi \int_{1}^{2} \left[\left(1 + \right) \right]_{1}^{2} \left[\left(1 + \left(1 + \right) \right) \right]_{1}^{2} \left[\left(1 + \left(1 + \right) \right) \right]_{1}^{2} \left[\left(1 + \left(1 + \right) \right) \right]_{1}^{2} \left[\left(1 + \left(1 + \left(1 + \right) \right) \right]_{1}^{2} \left[\left(1 + \left(1 +$	$\left(+\sqrt{x}\right)^2 - 1 dx$	20. 2 21. 3

10		
	a.	16/3
	b.	$\frac{2\pi}{3}$
	c.	$\frac{4\sqrt{3}}{3}$
	d.	8/3
11. –		
a.	2.3	16
b.	5.8	25
с.	8.3	06
d.	81.	375 π
e.	34.	915 π
12. –		
12. –	a.	16pi/15
		64pi/15
		56pi/15
13. 62		1 '
14. 28	pi/3	
15. 0.9	984	
16. 0.4	457	
17. 0.3		
18. 3.5	•	
19. 7.4	•	
20. 2.0	-	
21. 3.8	326pi	