Review - Integration/Particle Motion

Evaluate the indefinite integral.

1.
$$\int x\sqrt{x+2}dx$$

2. $\int 6a^4 (2a^5-1)^3 da$
3. $\int (3x^2-x)^4 (12x-2)dx$
4. $\int 3x^3\sqrt{1-x^2}dx$
5. $\int \frac{2x^2}{\sqrt{1+x^3}}dx$
6. $\int \tan^4 x \sec^2 x \, dx$
7. $\int \frac{\sin x}{\cos^3 x}dx$

Evaluate the definite integral.

10.
$$\int_{0}^{2} 5x(3x^{2}-1)^{3} dx$$

12. $\int_{3}^{5} \frac{2x}{\sqrt{2x-6}} dx$
11. $\int_{1}^{4} \frac{x}{\sqrt{x}} dx$
13. $\int_{1}^{2} x\sqrt{x-1} dx$

The position at time t = 0 is 1.

- Name the particles acceleration at t = 1 t = 2.567
- b. What is the particle's position at t = 2
 t = 6

8. $\int (x^2 + 1)(x^3 + 3x)^4 dx$ 9. $\int \frac{\sin\sqrt{x}}{\sqrt{x}} dx$

- c. Is the speed of the particle increasing or decreasing at t = 5.5? Explain!
- d. What is the particle's minimum position? When does it occur?
- e. What is the average acceleration from t = 0 to t = 6?
- f. Name the particle's average velocity from t = 0 to t = 6?
- 16. The acceleration of a particle traveling on the x-axis over a 6 second time interval is shown at the right. The velocity is -2 at t = 0.
 - a. What is the velocity at

t = 1

t = 6

- b. Is the speed of the particle increasing or decreasing at t = 5? Explain!
- c. What is the particle's minimum velocity? When does it occur?
- d. What is the average acceleration from t = 0 to t = 6?
- 17. A particle moves along the x axis in such a way that the acceleration at time t for t > 0 is given by a(t) = 2t. When t = 1, the position of the particle is 2 and the velocity is 5.
 - a. Write an equation for the velocity, v(t), of the particle for all t > 0.
 - b. Write an equation of the position, x(t) of the particle for all t > 0.
 - c. Find the velocity when the acceleration is 3.
 - d. Find the average acceleration from t = 0 to t = 2.
- 18. Name 2 ways that you **COULD** find the average velocity. Show the correct equations but **do not solve**.

CALCULATOR – Show the calculation that leads to your answer!

A velocity of a particle as it moves along the x-axis is described by $v(t) = 3\sin(0.5x^2 + 1.6)$ from t = 0 seconds to t = 3 seconds. The starting position of the particle is 2.

- a. When is the particle moving right?
- b. Find the particle's acceleration at t=2.
- c. Is the particle speeding up or slowing down at t = 2. EXPLAIN.
- d. When is the particle at rest?
- e. What is the total distance that the particle covers in the 3 seconds?
- f. What is the average velocity of the particle during the 3 seconds?
- g. What is the average acceleration of the particle over the 3 seconds?
- h. What is the particle's position at t = 3?
- i. Draw a labeled picture of the particle's movement in the box. Show the calculations.
- j. What is the closest distance that the particle gets to x = 8? When is it there?
- 19. Find the area of the striped region for $f(x) = x^2 4x + 3$ pictured.

20-21 Find the area that is between function and the x - axis and the curve on the given interval without a calculator. You may check your answer with a calculator.

20.
$$f(x) = x^2 + 2x$$
, [-3,0]

21. $g(x) = \sin x$, $[0, 2\pi]$

22. Find k such that $\int_{1}^{k} 3x^2 + 2x \, dx = -2$

Answers Review - Particle Motion

1.
$$\frac{2}{15}(x+2)^{\frac{3}{2}}(3x-4)+c$$

2. $\frac{3}{20}(2a^{5}-1)^{4}+c$
3. $\frac{2}{5}(3x^{2}-x)^{5}+c$
4. $-\frac{9}{8}(1-x^{2})^{\frac{4}{3}}+c$
5. $\frac{4}{3}\sqrt{x^{3}+1}+c$
6. $\frac{1}{5}\tan^{5}x+c$
7. $\frac{1}{2}\sec^{2}x+c$
8. $\frac{1}{15}(x^{3}+3x)^{5}+c$
9. $-2\cos\sqrt{x}+c$
10. 3050
11. $14/3$
12. $44/3$
13. $16/15$
14. $21/4$
15. $-$
a. $0, -1$
b. $1+\frac{\pi}{2}, -3+\frac{\pi}{2}$
c. Vel neg, acc neg; speed increasing
d. $-3+\frac{\pi}{2}$ at t = 6
e. $-1/3$

f. $\frac{\pi}{12} - \frac{2}{3}$

16. -
a. 0, 0
b. VEL NEG, ACC POS; SPEED IS DECREASING
c. MIN VELOCITY AT t = 0 and vel is -2
d. 1/3
17. -
a.
$$v = t^2 + 4$$

b. $pos = \frac{1}{3}t^3 + 4t - \frac{7}{3}$
c. At t = 3/2, vel is 25/4
d. 2
e. $\frac{1}{b-a}\int_{a}^{b}v(t)dt \text{ OR } \frac{P(b)-P(a)}{b-a}$

18. -

a. (0,1.756)
b. -5.381
c. NEG VEL, NEG ACC; SPEEDING UP
d. 1.756
e. 6.513
f. 0.547
g. -1.182
h. 3.642
i. j. At t = 1.756 the particle is 1.922 away from x = 8

19. 32/3
20. 8/3
21. 4
22. -1, 0