Review - Integration/Particle Motion

Evaluate the indefinite integral.

1. $\int x \sqrt{x+2} d x$
2. $\int 6 a^{4}\left(2 a^{5}-1\right)^{3} d a$
3. $\int\left(3 x^{2}-x\right)^{4}(12 x-2) d x$
4. $\int 3 x \sqrt[3]{1-x^{2}} d x$

Evaluate the definite integral.
10. $\int_{0}^{2} 5 x\left(3 x^{2}-1\right)^{3} d x$
11. $\int_{1}^{4} \frac{x}{\sqrt{x}} d x$
12. $\int_{3}^{5} \frac{2 x}{\sqrt{2 x-6}} d x$
13. $\int_{1}^{2} x \sqrt{x-1} d x$
14. $\int_{0}^{1} y\left(y^{2}+1\right)^{5} d y$

Particle Motion

15. The velocity of the particle traveling on the x-axis over a 6 second time interval is shown at the right.
The position at time $t=0$ is 1 .
a. Name the particles acceleration at $\mathrm{t}=1$
$t=2.567$
b. What is the particle's position at

$$
t=2 \quad t=6
$$

c. Is the speed of the particle increasing or decreasing at $t=5.5$? Explain!
d. What is the particle's minimum position? When does it occur?
e. What is the average acceleration from $t=0$ to $t=6$?
f. Name the particle's average velocity from $t=0$ to $t=6$?
16. The acceleration of a particle traveling on the x-axis over a 6 second time interval is shown at the right. The velocity is -2 at $\mathrm{t}=0$.
a. What is the velocity at $\mathrm{t}=1$

$$
t=6
$$

b. Is the speed of the particle increasing or decreasing at $t=5$? Explain!

c. What is the particle's minimum velocity? When does it occur?
d. What is the average acceleration from $t=0$ to $t=6$?
17. A particle moves along the x - axis in such a way that the acceleration at time t for $\mathrm{t}>0$ is given by $a(t)=2 t$. When $\mathrm{t}=1$, the position of the particle is 2 and the velocity is 5 .
a. Write an equation for the velocity, $\mathrm{v}(\mathrm{t})$, of the particle for all $\mathrm{t}>0$.
b. Write an equation of the position, $\mathrm{x}(\mathrm{t})$ of the particle for all $\mathrm{t}>0$.
c. Find the velocity when the acceleration is 3 .
d. Find the average acceleration from $t=0$ to $t=2$.
18. Name 2 ways that you COULD find the average velocity. Show the correct equations but do not solve.

CALCULATOR - Show the calculation that leads to your answer!

A velocity of a particle as it moves along the x-axis is described by $v(t)=3 \sin \left(0.5 x^{2}+1.6\right)$
from $t=0$ seconds to $t=3$ seconds. The starting position of the particle is 2 .
a. When is the particle moving right?
b. Find the particle's acceleration at $\mathrm{t}=2$.
c. Is the particle speeding up or slowing down at $t=2$. EXPLAIN.
d. When is the particle at rest?
e. What is the total distance that the particle covers in the 3 seconds?
f. What is the average velocity of the particle during the 3 seconds?
g. What is the average acceleration of the particle over the 3 seconds?
h. What is the particle's position at $t=3$?
i. Draw a labeled picture of the particle's movement in the box. Show the calculations.
j. What is the closest distance that the particle gets to $x=8$? When is it there?
19. Find the area of the striped region for $f(x)=x^{2}-4 x+3$ pictured.

20-21 Find the area that is between function and the x - axis and the curve on the given interval without a calculator. You may check your answer with a calculator.
20. $f(x)=x^{2}+2 x,[-3,0]$

21. $g(x)=\sin x,[0,2 \pi]$
22. Find k such that $\int_{1}^{k} 3 x^{2}+2 x d x=-2$

Answers Review - Particle Motion

1. $\frac{2}{15}(x+2)^{\frac{3}{2}}(3 x-4)+c$
2. $\frac{3}{20}\left(2 a^{5}-1\right)^{4}+c$
3. $\frac{2}{5}\left(3 x^{2}-x\right)^{5}+c$
4. $-\frac{9}{8}\left(1-x^{2}\right)^{\frac{4}{3}}+c$
5. $\frac{4}{3} \sqrt{x^{3}+1}+c$
6. $\frac{1}{5} \tan ^{5} x+c$
7. $\frac{1}{2} \sec ^{2} x+c$
8. $\frac{1}{15}\left(x^{3}+3 x\right)^{5}+c$
9. $-2 \cos \sqrt{x}+c$
10. 3050
11. $14 / 3$
12. $44 / 3$
13. $16 / 15$
14. $21 / 4$
15. -

a. $0,-1$
b. $1+\frac{\pi}{2},-3+\frac{\pi}{2}$
c. Vel neg, acc neg; speed increasing
d. $-3+\frac{\pi}{2}$ at $t=6$
e. $-1 / 3$
f. $\frac{\pi}{12}-\frac{2}{3}$
16. -
a. 0,0
b. VEL NEG, ACC POS; SPEED IS DECREASING
c. MIN VELOCITY AT $t=0$ and vel is -2
d. $1 / 3$
17. -
a. $\quad v=t^{2}+4$
b. $p o s=\frac{1}{3} t^{3}+4 t-\frac{7}{3}$
c. At $t=3 / 2$, vel is $25 / 4$
d. 2
e. $\frac{1}{b-a} \int_{a}^{b} v(t) d t \operatorname{OR} \frac{P(b)-P(a)}{b-a}$
18. -
a. $(0,1.756)$
b. -5.381
c. NEG VEL, NEG ACC; SPEEDING UP
d. 1.756
e. 6.513
f. 0.547
g. -1.182
h. 3.642
i. -
j. At $t=1.756$ the particle is 1.922 away from $x=8$
19. $32 / 3$
20. $8 / 3$
21. 4
22. $-1,0$

