PARTICLE MOTION - DAY 4 (THE FINAL DAY) AB CALCULUS - HARTER

1. The velocity of a particle over 7 seconds is graphed below. The position of the particle at $\mathrm{t}=0$ is 2 .
a. When does the particle change directions? Justify your answer.
b. What is the acceleration at $\mathrm{t}=2$?
c. Where is the speed of the particle decreasing?
d. What is the total distance that the particle travels over the 7 seconds?
e. What is the position of the particle at $t=3$ and $t=7$.

f. Graph the acceleration of the particle on the grid at the right.
g. Graph the SPEED of the particle on the grid at the right.
h. What is the average velocity of the particle over the 7 seconds?
i. What is the average acceleration over the 7 seconds?

2. The acceleration of a particle over 6 seconds is shown. The velocity of the particle at $t=0$ is -7 .
a. Find the velocity at $\mathrm{t}=2$ and $\mathrm{t}=6$.
b. Is the speed increasing or decreasing at $t=2$ and $t=6$? Why?
c. Find the average acceleration over the 6 second time interval.
d. At what time t is the particle's minimum velocity?

e. At what time t is the particle's maximum velocity?
3. A particle moves along the x-axis so that its position is given by $x(t)=2 t^{3}-15 t^{2}+36 t-1$
a. At what time is the particle at rest?
b. During what interval is the particle moving left? JYA
c. Find the position of the particle when the acceleration is 0 .
d. What is the acceleration when the velocity is 36 ?
4. A particle moves along the x - axis in such a way that the acceleration at time t for $\mathrm{t}>0$ is given by $a(t)=t^{2}$. When $\mathrm{t}=0$, the position of the particle is 1 and the velocity is 4 .
a. Write an equation for the velocity, $\mathrm{v}(\mathrm{t})$.
b. Write an equation of the position, $x(t)$.
c. Find the position of the particle when the velocity is 13 .
d. Find the average acceleration from $t=0$ to $t=2$.
5. A particle moves along the x-axis so that its velocity at time t is given by $v(t)=(t+2) \sin \left(\frac{t^{2}}{3}\right)$. At time $t=0$, the particle is at position $x=1$. (Round all answers to 3 decimal places).
a. Find the acceleration of the particle at time $t=2.5$. Is the speed increasing or decreasing at $t=2$? Why or why not?
b. Find all times t in the open interval $0<\mathrm{t}<4$ when the particle changes direction. Justify your answer.
c. Find the TOTAL DISTANCE the particle travels from time $t=0$ to time $t=4$.
d. During the time interval $0 \leq t \leq 4$, what is the greatest distance between the particle a position of 20 ? Show the work that leads to your answer.
e. What is the average velocity from time $t=0$ to time $t=4$?
f. What is the average acceleration from time $t=0$ to time $t=4$?

ANSWERS

1. -

a. 3
b. $-1 / 3$
c. $(0,3),(6,7)$
d. 3.5
e. $\mathrm{AT} t=3: 3.5$

AT $\mathrm{t}=7$: 1.5
f. Back board
g. Back board
h. $-1 / 14$
i. $-1 / 7$
2. -
a. $\mathrm{AT} t=2: 0$

AT $\mathrm{t}=6$: -4
b. $t=2$: Neither! Velocity is ZERO!
$\mathrm{t}=6$: Neg velocity, neg acceleration = speed is increasing!
c. $1 / 2$
d. $\quad T=0$
e. $\quad \mathrm{T}=3$
3. -
a. $t=2,3$
b. $(2,3)$.... Make a chart!!
c. $x(2.5)=26.5$
d. $a(0)=-30$
$a(5)=30$
4. -
a. $\quad v(t)=\frac{1}{3} t^{3}+4$
b. $x(t)=\frac{t^{4}}{12}+4 t+1$
c. $79 / 4$
d. $4 / 3$
5. -
a. $a(2)=-2.806$
$\mathrm{v}(2)=3.922$
slowing down since is velocity positive and acc is negative
b. at $t=3.070$
c. $\int_{0}^{4}|v(t)| d t=9.777$
d. Farthest is 19

Closest is 12.900
e. 0.606
f. -1.220

