Particle Motion - Day 2

1. The graph of $v(t)$ of a particle measured in m / s for $\mathrm{t}=0 \mathrm{to} \mathrm{t}=7$ is at the right. The position of the particle at $\mathrm{t}=0$ is 7 .
a. When is the particle changing directions?
b. What is the acceleration at $\mathrm{t}=2$?
c. What is the maximum speed of the particle?
d. Name the particles position at $\mathrm{t}=4$ and $\mathrm{t}=7$.

e. When is the speed increasing?
f. What is the average velocity of the particle over the 7 second interval?
g. What is the average acceleration of the particle over the 7 second interval?
2. The graph of $a(t)$ of a particle measured in m / s for $\mathrm{t}=0$ to $\mathrm{t}=6$ is at the right. The velocity of the particle at $\mathrm{t}=0$ is 2 .
a. Find the velocity at time $t=2$ and $t=6$.
b. What is the minimum velocity? When does it occur?
c. Is the particle speeding up or slowing down at $\mathrm{t}=6$? Why?
3. $a(t)=6 t+2$ and velocity is 2 and position is -2 at $\mathrm{t}=0$.
a. Find an expression for the velocity $\mathrm{v}(\mathrm{t})$.

b. Find an expression for the position $x(t)$.
4. A particle moves along the x-axis so that its position is given by $x(t)=t^{3}-6 t^{2}+9 t+6$.
a. At what time is the particle at rest?
b. During what interval is the particle moving right? JYA
c. Find the position of the particle when the acceleration is 0 .
5. A particle moves along the x -axis so that its position is given by $x(t)=t(t-1)^{3}$.
a. At what time is the particle at rest?
b. During what interval is the particle moving right? JYA
c. Find the position of the particle when the acceleration is 0 .
6. A particle moves along the x -axis so that its velocity at time t is given by $v(t)=-\cos \left(x^{2}\right)$ for $0 \leq x \leq 2$ At time $t=0$, the particle is at position $x=4$.
a. Find the acceleration of the particle at time $t=1$.
b. Find all points from $t=0$ to $t=2$ that the particle changes direction.
c. Find the total distance traveled by the particle from $t=0$ to $t=2$.
7. A particle moves along the x - axis in such a way that the acceleration at time t for $\mathrm{t}>0$ is given by $a(t)=3 t$. When $\mathrm{t}=1$, the position of the particle is 6 and the velocity is 2 .
(a) Write an equation for the velocity, $\mathrm{v}(\mathrm{t})$, of the particle for all $\mathrm{t}>0$.
(b) Write an equation of the position, $x(t)$ of the particle for all $t>0$.
(c) Find the position of the particle when $\mathrm{t}=1$.
(d) Find the average acceleration from $\mathrm{t}=0$ to $\mathrm{t}=3$.
(e) Find the average velocity from $t=0$ to $t=3$.
8. A particle moves along the x-axis in such a way that its position at time t is given by $x(t)=(2 t-1)(t-1)^{2}$.
(a) At what time(s) t is the particle at rest?
(b) During what interval of time is the particle moving left? Justify your answer.
(c) At what time during the interval found in (b) is the particle moving the fastest? (that is, the speed is the maximum)? Justify your answer.
9. A particle moves along the x - axis in such a way that the acceleration at time t for $\mathrm{t}>0$ is given by $a(t)=2 t-1$. When $t=1$, the position of the particle is 3 and the velocity is 1 .
(a) Write an equation for the velocity, $\mathrm{v}(\mathrm{t})$, of the particle for all $\mathrm{t}>0$.
(b) Write an equation of the position, $x(t)$ of the particle for all $t>0$.
(c) Find the position of the particle when $t=3$.
10. -

a. $t=2,5$
b. $3 / 2$
c. 6
d. $t=4$: 7

$$
t=7: 2.5
$$

e. $(2,4),(5,7)$
f. $-9 / 14$
g. $-3 / 7$
2. -
a. $t=2: 2+\pi$
$t=6: 2 \pi-1$
b. at $t=0, v=2$.
c. Slowing down; acc is neg, velocity is pos
3. -
a. $\quad v(t)=3 t^{2}+2 t+2$
b. $x(t)=t^{3}+t^{2}+2 t-2$
4. -
a. $t=1,3$
b. $(0,1)(3, \infty)$; v is pos!
c. $x(2)=8$
5. -
a. $t=1,1 / 4$
b. $\left(\frac{1}{4}, 1\right)(1, \infty)$
c. $x(1)=0, x(1 / 2)=-1 / 16$
6. -
a. $a(1)=1.682$
b. $t=1.253$
c. 1.493
7. -
a. $\quad v(t)=\frac{3}{2} t^{2}+\frac{1}{2}$
b. $\quad x(t)=\frac{1}{2} t^{3}+\frac{1}{2} t+5$
c. 6
d. $9 / 2$
e. 5
8. -
a. 1, 2/3
b. $(2 / 3,1)$
c. Speed is a maximum at $5 / 6$
9. -
a. $\quad v(t)=t^{2}-t+1$
b. $x(t)=\frac{1}{3} t^{3}-\frac{1}{2} t^{2}+t+\frac{13}{6}$
c. $29 / 3$

