\qquad

1. A rectangular field is fenced off along the bank of a river with no fence required along the river. The material for the fence costs $8 \$$ per foot for the side parallel to the river and $2 \$$ per foot for the sides perpendicular to the river. What should the dimensions of the enclosure be to maximize the area, if the total cost of the fence is 2500\$?
2. A window that is capped with a semi-circle on the top and bottom as shown has a perimeter of 16 ft . Find the radius of the circle if the area is to be a maximum.

3. Your company needs design cylindrical metal containers with a volume of 12 cubic feet. The top and bottom are made of a sturdy material costing $3 \$$ per square foot while the side can be made of a thinner material costing $1 \$$ per square foot. Find the height, radius and cost of the least expensive container possible.
4. A field 160000 square feet is too be enclosed by a fence on all 4 sides. Metal fencing costing $12 \$$ per foot will be used for the side facing the road. A cheaper fence costing $5 \$$ per foot can be used for the remaining 3 sides. What should the dimensions of the field be to minimize the cost of the fence?
5. A plum orchard now has 30 trees per acre and an average yield of 300 plums per tree. For each additional tree planted the yield will decrease by 8 apples per tree. How many trees per acre will maximize the crop?
6. A closed rectangular box with a square base has an volume of 1000 cm cubed. The material for the top and bottom costs $\$ 2$ per square cm while the sides cost $1 \$$ per square cm . Find the dimensions that will lead to the minimum cost.
7. A manufacturer wants to design an open box with a square base that has a surface area of 108 square inches. What dimensions will produce a box with maximum volume?

DERIVATIVE INTERPRETATION

Consider $f^{\prime}(x)=x \cos (0.65 x)$ on the interval $[-4,3]$.

1. Draw a labeled diagram in the box.
2. Where is f concave up?
3. Name x-values of the point(s) of inflection on f ?
4. Name x-values of the point(s) of inflection of f^{\prime} ?
5. Where is f concave down and increasing?
6. Find $f^{\prime \prime \prime}(2.35)$.

Consider $f^{\prime \prime}(x)=\frac{2}{e^{0.6 x}}-\cos (0.25 x)$ on the interval $[-1,9]$.
7. Draw a labeled diagram in the box.
8. Where is f concave down?
9. Name x-values of the point(s) of inflection of f ?
10. Name x-values of the point(s) of inflection of f^{\prime} ?
11. Where is f^{\prime} concave up and decreasing?
12. Find $f^{\prime \prime \prime}(2.35)$.

Answers

Optimization

1. 156.25 ft by 312.5 ft
2. 2.546
3. $R=.860, h=5.16$, Cost $=\$ 41.85$
4. 306.79 ft by 521.54 ft
5. 34 trees!
6. 7.94 cm by 7.94 cm by 15.87 cm
7. 6 in by 6 in by 3

Derivative Interpretation

1. -
2. $(-1.313,1.324)$
3. $x=-1.323,1.324$
4. $0,-3.521$ (you need to graph $f^{\prime \prime}$!)
5. $(-4,-1.323),(1.324,2.650)$
6. -1.341
7. -
8. $(1.236,6.074)$
9. 1.236 and 6.074
10. 3.177
11. $(3.177,6.074)$
12. -0.154
