CURVE SKETCHING

Use the graph of the derivative of f at the right on [0,5].1. Where is f concave up? Justify your answer.

- 2. Where is f decreasing? Justify your answer.
- 3. Name the x values of any point(s) of inflection on f.
- 4. Name any relative minimum on f. JYA.
- 5. Name the equation of the tangent at x=4, if f(4) = -3
- 6. If f(0) = 0, sketch a graph of f on the grid provided.

Use the graph of the second derivative of f on [-3,1].

- 7. Name where f' is decreasing?
- 8. Where is f' concave up? Justify your answer.
- 9. Where is f concave up? Justify your answer.
- 10. Name the x values of any points of inflection on f.
- 11. Name the x –values of any points of inflection on f'.
- 12. Draw a curve in the box such that f'(x) < 0 and f''(x) > 0.
- 13. Find the value of k if $f(x) = x^3 3kx^2 4x$ has a point of inflection x = -4.
- 14. Graph f given that f(0) = -1, f(1) = 1, f(3) = 3 and the chart below.

	(-∞,0)	(0,1)	(1,3)	(3,∞)
f'	negative	positive	positive	positive
<i>f</i> "	negative	negative	positive	negative

MULTIPLE CHOICE

15. What is the x-coordinate of the point of inflection of $y = \frac{1}{10}x^5 + \frac{1}{2}x^4 - \frac{3}{10}$?

- 16. The graph of a twice differential equation f is shown. Which is true?
 - a. f(2) < f'(2) < f''(2)
 - b. f(2) < f''(2) < f'(2)
 - c. f'(2) < f(2) < f''(2)
 - d. f''(2) < f(2) < f'(2)
 - e. f''(2) < f'(2) < f(2)

c. -1 d. -3/10

17. $f(x) = -x^6 + x^3 - 2$. On which interval is f decreasing?

- a. $(-\infty, 0)$ d. $(0, \infty)$ b. $(-\infty, \sqrt[3]{\frac{1}{2}})$ e. $(\sqrt[3]{\frac{1}{2}}, \infty)$ c. $(0, \sqrt[3]{\frac{1}{2}})$
- 18. Where does $f(x) = x^4 x^2$ have a relative minimum?
 - a. $\sqrt{2}$ b. 1 c. $\frac{\sqrt{2}}{2}$ d. $\frac{\sqrt{2}}{2}$
- 19. The graph of f' is shown. It is tangent to the x-axis at point c. Which of the following describes the relative extrema on (a,b).
 - a. One relative maximum and one relative minimum
 - b. One relative maximum and two relative minima
 - c. Three relative maxima and two relative minima
 - d. Two relative maxima and two relative minima
 - e. Two relative maxima and one relative minimum

Use the graph of h'(x) for 20-22.

20. At what value does h(x) have its absolute minimum?

a.	0		
b.	1	d.	5
с.	3	e.	7

21. The point (5,2) is on the graph of y = h(x). An equation of the line tangent to h(x) at (5,2) is

- a. y-2 = x-5b. y = x-2c. y-2 = 2(x-5)d. x = 5e. y = 2
- 22. How many inflection points does h have on (0,7)?
 - a. 3
 - b. 4
 - c. 5
 - d. 6
 - e. 7

23. At which point on the graph of y = f(x) shown is f'(x) < 0 and f''(x) > 0.

- a. A
- b. B
- c. C
- d. D
- e. E

24. The only function that does not satisfy the Mean Value Theorem on the interval specified is

a. $f(x) = x^2 - 2x$ on [-3,1]b. $f(x) = \frac{1}{x}$ on [1,3]c. $f(x) = \frac{x^3}{3} - \frac{x^2}{2} + x$ on [-1,2]

d. $f(x) = x + \frac{1}{x}$ on [-1, 1]

e. $f(x) = x^{2/3}$ on $\left[\frac{1}{2}, \frac{3}{2}\right]$

e. 0

Answers!

- 1. (0,1), (3.65,5); F' IS INCREASING
- 2. (2,5); F' IS NEGATIVE
- 3. X = 1, 3.65
- 4. NONE, F' NEVER SWITCHES FROM NEG TO POSITIVE.
- 5. Y + 3 = -1.8(X 4)

- 6. 7. (-3,0) F" IS NEGATIVE
- (-3,-2) (-0.5,1) F" IS INCREASING
 (0,1) F" IS POSITIVE
- 10. 0 ONLY!

11. -2 AND -0.5

