Interpreting Derivatives 1

Consider the graph of f^{\prime} on the interval $[-3,3]$.

1. On what intervals is f increasing? Decreasing?
2. Where is f concave up and concave down?
3. Where does f have a local maximum? A local minimum? Justify your answer.
4. Where does f have a point of inflection? Justify your answer.
5. Where does f have its minimum value on the interval $[0,3]$? Its maximum value?

6. Assume $f(0)=0$. Sketch a graph of f.

Consider the graph of f^{\prime} on the interval $[0,4]$.
7. Over what intervals is f increasing? Justify your answer.
8. Over what intervals is f concave down? Justify your answer.
9. Where is there a point of inflection on f ?
10. If $f(0)=2$, graph f.

Consider the graph of $g^{\prime \prime}$ on the interval $[-1,4]$.
11. Over what intervals is g concave down? Justify your answer.
12. Over what intervals is g^{\prime} concave down? Justify your answer.
13. Where is there a point of inflection on g ?
14. Where is there a point of inflection on g^{\prime} ?

Interpreting the derivative 2

Use the graph of f^{\prime} on the interval $[-3,3]$ to answer the questions about f .

1. On what intervals is f increasing? Decreasing?
2. Where does f have a stationary point?
3. Where does f have a local maximum? A local minimum? Justify your answer.
4. Where does f have a point of inflection? Justify your answer.
5. Where does f have its minimum value on the interval $[0,3]$? Its maximum value?

6. Assume $f(0)=0$. Sketch a graph of f .

Use the graph of g^{\prime} at the right on the interval $[-4,3]$.
7. Is $g(2)<g(3)$? Explain.
8. Over what intervals is g concave down? Concave up? Justify your answer.
9. Where does g have a local maximum? A local minimum? Justify your answer.
10. Rank $g(-4), g(-2), g(-1), g(0)$ in increasing order.
 (Think water levels!)

The graph of the second derivative of h is shown. Use the graph to answer questions about h and h^{\prime}.
11. Where is the graph of h concave up? Concave down?
12. Where is the graph of h^{\prime} concave up? Concave down?
13. Where is the point(s) of inflection on h ?
14. Where is the points(s) of inflection on h^{\prime} ?
15. Rank $h^{\prime}(1), h^{\prime}(2), h^{\prime}(3), h^{\prime}(4)$ in increasing order. (Think water levels!)

Answers - Higher Derivatives

1. Inc: $(-2,0)(2,3)$ Dec: $(-3,-2)(0,2)$
2. Ccup: $(-3,-1.2)(1.2,3) f^{\prime}$ has pos slope ccdwn: (-1.2,1.2) f' has neg slope
3. Local Max: 0; f^{\prime} switches from pos to neg at 0

Local Min: -2,2; f^{\prime} switches from neg to pos at -2 and 2
4. POI: -1.2 and 1.2 ; f ' switches from increasing to decreasing at -1.2 and f ' switches from decreasing to increasing at 1.2
5. Max at $3, \operatorname{Min}$ at 2 .
6.

7. $(0,3), f^{\prime}$ is positive
8. $(2,4), f^{\prime}$ is decreasing
9. At $x=2$
10.

11. $(2,3.8), g^{\prime \prime}$ is negative.
12. (.5, 3.2), $g^{\prime \prime}$ is decreasing
13. $x=2,3.8$
14. $x=0.5,3.2$

Interpreting the Derivative

1. INC: $(-1,3)$ DEC: $(-2,-1)$
2. $x=-1,2$
3. No Local Max, $x=-1$ is the local minimum
4. POI: $x=0,2$; f^{\prime} switches from increasing and decreasing at $x=0$. f^{\prime} switches from decreasing to increasing at $\mathrm{x}=2$
5. Min at $x=0, \operatorname{Max}$ at $x=3$
6.

7. Yes, since g has positive slope between 2 and 5 .
8. CCup: $(-4,-2)(1,3) ; g^{\prime}$ is increasing CCdown: $(-2,1) ; g^{\prime}$ is decreasing
9. REL MAX at $x=0 ; f^{\prime}$ switches from positive to negative

REL MIN at $x=-3,2 ; f^{\prime}$ switches from negative to positive
10. $g(-2), g(-4), g(-1), g(0)$
11. CCup: $(-\infty, 1)(2,4)$

CCdown: $(1,2)(4, \infty) ; g^{\prime}$ is decreasing
12. CCup: $(1.5,3.3)$

CCdown: $(-\infty, 1.5)(3.3, \infty)$
13. $x=1,2,4$
14. $x=1.5,3.3$
15. $h^{\prime}(2), h^{\prime}(1), h^{\prime}(3), h^{\prime}(4)$

