EXTREMA ON AN INTERVAL

AP CALCULUS AB - HARTER

Find the maximum and minimum on the given interval. Justify your answer.

1. $f(x)=-x^{2}+2 x+1,[0,4]$
2. $f(x)=\frac{1}{3} x-2 \sqrt{x} ;[1,16]$
3. f^{\prime} is graphed on the interval $[-3,4]$ with the areas labeled as shown. If $f(1)=2$, find the maximum and minimum value of $f(x)$ on $[-3,4]$. Justify your answer.

4. f^{\prime} is graphed on the interval $[0,6]$ with the areas labeled as shown. If $f(6)=8$, find the maximum and minimum value of $f(x)$ on $[0,6]$. Justify your answer.
5. f^{\prime} is graphed on the interval $[-3,5]$. If $f(0)=1$, find the maximum and minimum value of $f(x)$ on $[-3,5]$. Justify your answer.

6. $h(x)=\int_{2}^{x} f(t) d t$ The graph of f is pictured. Find
a. Find $h(-2)$ and $h(4)$
b. Find $h^{\prime}(2)$ and $h^{\prime}(0)$
c. Where is h concave up? JYA
d. Where is h increasing? JYA
e. Where is h decreasing AND concave down? JYA
f. Name the maximum and minimum values of h on the interval [-2,7]. JYA.

7. f^{\prime} is graphed on the interval $[-2,7]$. If $f(4)=5$, find the maximum and minimum value of $f(x)$ on $[-2,7]$. Justify your answer.
8. $\quad a(x)=\int_{8}^{x} f(t) d t$ The graph of f is pictured.
a. Find $a(2)$ and $a(3)$
b. Find $a^{\prime}(2)$ and $a^{\prime}(5)$
c. Find $a^{\prime \prime}(2)$ and $a^{\prime \prime}(4)$
d. Where is a increasing? JYA
e. Name the maximum and minimum values of $a(x)$ on the interval [0,8]. JYA.

