1. Use the definition of the derivative to find f^{\prime} for $f(x)=2 x^{2}$.
2. Draw a graph of $f(x)=2 x^{2}$. Use the answer to question 1 to label the slopes at x values of $-2,-1,0,1$ and 2 .
3. Use the definition of the derivative to find f^{\prime} for $f(x)=\frac{1}{x}$.
4. Draw a graph of $f(x)=\frac{1}{x}$.

Use the answer to question 3 to label the slopes at x values of $-2,-1,0,1$ and 2 on your graph.
5. Use the definition of the derivative to find the instantaneous slope of $f(x)=x^{3}-2$ at $x=-2$.
6. Use your graphing calculator to graph $f(x)=\sin x$ and its derivative on the same grid.
7. Consider $f(x)=x^{2}-2 x+1$
a. Sketch a graph of $f(x)$.
b. Use the definition of the derivative to find $f^{\prime}(x)$.
c. Find $f^{\prime}(2)$ and $f^{\prime}(-2)$.
d. Verify the answer to 7 c in 2 ways with your graphing calculator.
8. Consider $f(x)=-3 x+1$
a. Sketch a graph of $f(x)$.
b. Use the definition of the derivative to find $f^{\prime}(x)$.
c. Find $f^{\prime}(1)$ and $f^{\prime}(7)$.
d. Verify the answer to 7 c in 2 ways with your graphing calculator.
9. Consider $f(x)=\sqrt{x}$
a. Sketch a graph of $f(x)$.
b. Use the definition of the derivative to find $f^{\prime}(x)$.
c. Find $f^{\prime}(0)$ and $f^{\prime}(3)$.
d. Verify the answer to 7 c in 2 ways with your graphing calculator.
10. Consider $f(x)=-2 x \sin x$
a. Use your graphing calculator to sketch a graph of $f(x)$.
b. Find $f^{\prime}(\pi)$
c. What is the meaning of the answer to part 10b?

