Find the area between the curve and the x-axis on the given interval without a calculator. Include a shaded graph with your answer.

1. $y=x^{2},[-1,1]$
2. $g(x)=\sin x ;[0, \pi]$
3. $f(x)=x^{3}-x^{2} ;[-1,2]$
4. $f(x)=-x^{2}+2 x ;[-2,2]$
5. $f(x)=-x^{3} ;[-2,2]$
6. $f(x)=x^{3}+1 ;[-2,1]$

Find the area of the striped and non-striped regions within the rectangle .

Find k for each.
9. $\int_{-1}^{2}(2 x-k) d x=16$
10. $\int_{1}^{4}(k \sqrt{x}) d x=8$

Find the integral of each without a calculator.
11. $\int_{-1}^{2} x \sqrt{x+2} d x$
12. $\int_{0}^{1} \frac{2 x}{\left(x^{2}+3\right)^{3}}$

RECALL - Area Accumulation

13. If $g(x)=\int_{0}^{x} f(x) d x$ and the graph of f is at the right, answer each.
a. Find $g(0), g(-4), g(4)$
b. Name the x-value that is the maximum and minimum value of g
c. Where is g concave up? Why?
d. Where is the g increasing? Why?
e. Find the slope of g at $x=3$ and $x=-2$.

Answers

1. $2 / 3$
2. 2
3. $25 / 12$
4. 8
5. 8
6. $19 / 4$
7. $50 / 3$
8. 60.418
9. $-13 / 3$
10. $12 / 7$
11. $46 / 15$
12. $7 / 288$
13. -

a. $\quad g(0)=0, g(-4)=-2 p i, g(4)=-6$
b. $\quad \max$ at $x=0$
\min at $x=-2 p i$
c. concave up at $(-4,-2),(3,4)$, since $g^{\prime \prime}=f^{\prime}$ and f is increasing on those intervals.
d. Increasing at $(-4,0)$ since $g^{\prime}=f$ and f is positive on $(-4,0)$
e. Since $g^{\prime}=f, g^{\prime}(3)=f(3)=-3$ and $g^{\prime}(-2)=f(-2)=2$

