3 VOLUME BY SLICES - Show your work on your own paper.

Draw a sketch of the figure. Use calculus to find the volume with the indicated base and slices. Show the integral used. All slices are perpendicular to the base.

1. Base the area ENCLOSED by $f(x)=0.27 e^{x-1}+2$ and $g(x)=-0.24 x^{2}-0.35 x+3.8$
a. Squares
b. Rectangles of height 2
c. Semicircles
d. Right isosceles triangles
e. Equilateral triangles
f. Rectangles twice as tall as wide
2. Base enclosed by the x and y axis and the line $y=-2 x+4$
a. Squares
b. Rectangles of height 3
c. Semicircles
d. Right isosceles triangles
e. Equilateral triangles
3. Base enclosed by the x axis, y-axis, $f(x)=\cos \pi x+2$ and the line $x=2$.
a. Squares
b. Rectangles of height 2
c. Semicircles
d. Right isosceles triangles
e. Equilateral triangles
4. Base enclosed by the x and y axis and the line $f(x)=2 \sin (\cos x)+4$ and the line $\mathrm{x}=6$.
a. Squares
b. Rectangles of height 3
c. Semicircles
d. Right isosceles triangles
e. Equilateral triangles
5. Find the area enclosed by $f(x)=2 \sin (\cos x)+4$ and $g(x)=x^{3}-2 x^{2}-2 x+7$. Include a graph, integral(s) used and the answer to 3 decimal places.
6. Find the area between $f(x)=x^{3}$ and $g(x)=x$ without a calculator. Include a graph, integral(s) used and the calculation that leads to your answer.

Answers

1. In class!
2. -

a. $32 / 3$
b. 12
c. $\frac{4 \pi}{3}$
d. $16 / 3$
e. $\frac{8 \sqrt{3}}{3}$
3. In class!
4.
a. $\quad 101.185$
b. 70.583
c. $\quad 12.648 \pi \approx 39.734$
d. 50.593
e. 43.814
5. 3.396
6. $2 \int_{0}^{1} x-x^{3} d x=\frac{1}{2}$

