<u>3 VOLUME BY SLICES – Show your work on your own paper.</u>

Draw a sketch of the figure. Use **calculus** to find the volume with the indicated base and slices. Show the integral used. All slices are perpendicular to the base.

- 1. Base the area ENCLOSED by $f(x) = 0.27e^{x-1} + 2$ and $g(x) = -0.24x^2 0.35x + 3.8$
 - a. Squares
 - b. Rectangles of height 2
 - c. Semicircles
 - d. Right isosceles triangles
 - e. Equilateral triangles
 - f. Rectangles twice as tall as wide
- 2. Base enclosed by the x and y axis and the line y = -2x + 4
 - a. Squares
 - b. Rectangles of height 3
 - c. Semicircles
 - d. Right isosceles triangles
 - e. Equilateral triangles
- 3. Base enclosed by the x axis, y-axis, $f(x) = \cos \pi x + 2$ and the line x=2.
 - a. Squares
 - b. Rectangles of height 2
 - c. Semicircles
 - d. Right isosceles triangles
 - e. Equilateral triangles
- 4. Base enclosed by the x and y axis and the line $f(x) = 2\sin(\cos x) + 4$ and the line x = 6.
 - a. Squares
 - b. Rectangles of height 3
 - c. Semicircles
 - d. Right isosceles triangles
 - e. Equilateral triangles
- 5. Find the area enclosed by $f(x) = 2\sin(\cos x) + 4$ and $g(x) = x^3 2x^2 2x + 7$. Include a graph, integral(s) used and the answer to 3 decimal places.
- 6. Find the area between $f(x) = x^3$ and g(x) = x without a calculator. Include a graph, integral(s) used and the calculation that leads to your answer.

<u>Answers</u>

- In class!
 –

 a. 32/3
 b. 12
 - c. $\frac{4\pi}{3}$ d. 16/3
 - e. $\frac{8\sqrt{3}}{3}$
- 3. In class!

4.

- a. 101.185
- b. 70.583
- c. $12.648\pi \approx 39.734$
- d. 50.593
- e. 43.814
- 5. 3.396

6.
$$2\int_{0}^{1} x - x^{3} dx = \frac{1}{2}$$