2 - AREA BETWEEN CURVES, VOLUMES WITH KNOWN CROSS SECTIONS

Sketch the region, write the associated integral, find the area between the functions. Use a calculator to integrate on the * items.

- 1. between $y = x^2$ and $y = x^3$.
- 2. between y = x + 3 and $y = x^2 2x + 3$.
- 3. between y = x and $y = \sqrt{x}$.
- 4. * area enclosed by $y = -2\sin(x-3)$ and $y = \ln(x+2)$.
- 5. enclosed by y = 2x + 2 and $y = x^3 x^2 + 2$.
- 6. * area between $f(x)=x^3-2x^2-2x+3$ and $g(x)=5\cos(2x-2)$.

Find the indicated volumes. No Calculator necessary!

- 7. Find the volume of the solid that is bounded by the circle $x^2 + y^2 = 9$ with the indicated cross sections taken perpendicular to the x-axis. Sketch each.
 - a. Squares
 - b. Equilateral triangles
 - c. Semicircles
 - d. Isosceles right triangles
- 8. Find the volume of the solid that is bounded by $y = x^3$, y = 0 and x = 1 with the indicated cross sections taken perpendicular to the x-axis.
 - a. Squares
 - b. Rectangles whose height is twice their base
 - c. Semicircles
 - d. Rectangles of height 2
- 9. Find the volume of the solid that is bounded by y = x, y = -x and x = 2 with the indicated cross sections taken perpendicular to the x-axis.
 - a. Squares
 - b. Isosceles right triangles
 - c. Equilateral triangles
 - d. Rectangles of height 3

Answers

- 1/12
 9/2
- 2. 9/2
- 3. 1/6
- 4. 3.123
- 5. 37/12
- 6. 14.233
- 7. –
- a. 144
- b. $36\sqrt{3}$
- c. 18π
- d. 72

- 8. –
- a. 1/7
- b. 2/7
- c. $\pi/56$
- d. 1/2
- 9 -
- a. 32/3
- b. 16/3
- c. $8\sqrt{3}/3$
- d. 12