Draw a sketch of the figure. Use calculus to find the volume with the indicated base and slices. Show the integral used. All slices perpendicular to the base.

1. Base: $x^{2}+y^{2}=4$, rectangular slices where height is twice the base.
2. Base: a triangle formed by the line $y=\frac{1}{2} x$, the x-axis and $x=5$.

Slices: semicircles
3. Base: enclosed area formed by $y=e^{x}$ on the interval $[0,3]$, and $y=0$. Slices are semicircles.
4. Base: rectangle formed by the line $y=2$ and $y=0$ on the interval $[1,5]$ Slices: semicircles Use geometry to verify your calculus answer.
5. Base: $x^{2}+y^{2}=25$, semicircle slices
6. Base: enclosed area formed by $y=e^{x}$ on the interval $[0,3]$, and $y=0$. Slices are squares.
7. Base: a triangle formed by the line $y=2 x-4$, the x-axis and y-axis. Slices: semicircles
8. Base: $x^{2}+y^{2}=4$. Slices: right triangle
9. Base bounded by $y=x^{2}+2, x=2, x=0$ and $y=0$ with square slices.

Recall

Without a calculator find the enclosed area. Include a graph.
10. $\begin{aligned} & f(x)=x^{3}-3 x+2 \\ & g(x)=x+2\end{aligned}$
$f(x)=x^{2}-3 x+5$
$g(x)=-2 x^{2}+9 x-4$

With a calculator, find the enclosed area. Include a graph.
12. $f(x)=\sin x+\cos x$
$g(x)=-x^{3}+3 x^{2}+3 x-3$

Ws 1 - volume by slices

1. $\frac{256}{3}$
2. $\frac{125 \pi}{96}$
3. $\frac{\pi}{16}\left[e^{6}-1\right]$
4. 2π
5. $\frac{250 \pi}{3}$
6. $\frac{1}{2}\left[e^{6}-1\right]$
7. $\frac{4 \pi}{3}$
8. $\frac{64}{3}$
9. $\frac{376}{15}$
10. 8
11. 4
12. 19.888
